GAME: Arabian Nights [https://en.wikipedia.org/wiki/Arabian_Nights (2001 video_game)]

Protection: SecuROM *new* 4.48.00.0004

Author: Luca D’Amico - V1.0 - 5 May 2022 (English version 11 March 2023)

DISCLAIMER:

All information contained in this technical document is published for general information purposes only and in

good faith. Any trademarks mentioned here are registered or copyrighted by their respective owners.

I make no warranties about the completeness, correctness, accuracy and reliability of this technical document.

This technical document is provided "AS IS" without warranty of any kind. Any action you take upon the
information you find on this document is strictly at your own risk. Under no circumstances | will be held

responsible or liable in any way for any damages, losses, costs or liabilities whatsoever resulting or arising
directly or indirectly from your use of this technical document. You alone are fully responsible for your actions.

You will need:

- Windows XP VM (Il used VMware [https://www.vmware.com/products/workstation-player.html])
- x64dbg (x32dbg) [https://x64dbg.com/]

- CFF Explorer [https://ntcore.com/?page id=388]

- Original game disc (you need the ORIGINAL, otherwise this will not work)

Before you start:

SecuROM protected games may not work properly on Windows versions newer than XP.

As we already experienced with SafeDisc, once we removed this DRM, the game works perfectly

even on Windows 11.

This DRM works by replacing (proxying) various Windows APls used by the game, with a function
that after running some checks, will reach the requested API with a jump instruction. This jump will
be absolute, without passing from the relative IAT thunk, so when we rebuild the imports, we will

need to loop through the IAT to find the correct thunk, get its address, and then replace the

SecuROM callin the .text segment with it.
There’s also an initial layer of encryption (we will need the original game disc to decrypt it) and
various anti-debugging techniques that will make it harder to reach the Original Entry Point (OEP).

Let’s begin:

Install the game selecting the FULL install option. Once installed load the main executable

(_start.exe) inside the debugger.

We can see that the entry point is located at 0x737CFD.

If we go to the Memory Map tab, we can see that we are currently located in the .cms_t section:

Qo400000 | 00001000 | _start, exe
00401000 | 000&ez2000| . text"
00453000 | 00003000 (".rdata"
004&&000 | 00zC4000(. data”
00724000 | 0000z2000(".idata"
oool4000(M.oms_t"
00740000 | 0002000 | . oms_d"
0072000 | 00oolooo| . idata"
0070000 | 0000la0a| “.rsec”
007EEQOD | 00009000 | ".reloc!

We can suppose that the code of our game is in the .text segmentand what we are going to execute

is the SecuROM loader.

If we try to click on RUN, we will be constantly blocked with exceptions of various types: this is only
one of the various techniques put in place to slow us down. This problem can be easily fixed by
configuring the debugger to ignore all exceptions:

Executable code

Read-only initialized data
Initialized data

Import tables

Import tahles
FesOUrCes
EBase relocations

IMG
IMG
IMG
IM3S
IMG
IMG
IMG
IMs
IM3S

IMG

_R___
ER-——-
_R___
Rm
Rl,\c
ER-——-
Rm
_Rw__
_R___
_R___

ERWC—
ERWC—
ERWC_—
ERWC -
ERWC—
ERWC—
ERWC—
ERWC—
ERWC -
ERWC—

1* Preferences

Events Engine Exceptions Disasm GUI Misc
Exception Filters:
Trnknown exceptions
O00o0O000-FFFFEFFF
[Ignore Range]
[Delete Range]
[Ignore Last]
Break On

() First chance
() Second chance
() Do not break

Logaing
[Log exception

Exception handled by

() Debugger
(%) Debuggee

I Save H Caniel]

| also recommend unchecking “Log exception”, because the huge number of exceptions will
extremely slow down the execution. Now we are ready to start.

As in most cases when tryingto remove a protection of this type, the first step is to be able to reach
the OEP.

My first attempt was to set a hardware breakpoint on the .text segment on execution: unfortunately
thanks to the various anti-debugging techniques used, this operation will cause an endless loop of
the SecuROM loader.

So, | decided to proceed in two steps:

1) Find out at what address the OEP is located

2) Find a way to reach said address
To get closer to the OEP, I've set a breakpoint on an API that is usually located near the Entry Point:
GetCommandLineA.
Each time this breakpoint is triggered, we must click on “Run to user code” to see where the call
originates from. Once we hit the breakpoint for the 3rd time, we are finally located inside the .text
segment:

® (00440023
® 0044003 &
r----# (00440025
0 ®||0044003 8
0 ® 0044003 C
! ®||00440041
L--—r@ (00440044

®||0044004E
00440050
0044005 &

0o44005E
00440060
00440065
00440068
0044006F
an44nn74

8324 04
S5C0

v TR OOA

Ef 1C

E& FFOOOOOO

83C4 04

CF4E FC 00000000
EZ zOFEBOOOO

FF1: 00127400

AZ 15317200

EZ FO7FE0000

A3 I0CE4700

EZ D&720000

EZ 31720000

Es SCLEOOQOO

CT4S NN Annnnnnn

add esp, 4

Lest eax,edax

jne _start.440044

push 1C

call _start.440E40

add esp, 4

mow dwatrd ptr ss:i[ebp-4],0
call _start.455870

call dword ptr ds:[741300]
mov dword ptr ds:[7251138],eax<
call _start.455650

mowv dword ptr ds:[47CE30],eax
call _start.45c5140

call _start.454FF0

call _start.44FED0

m dwnted ntre ss:fehn-300. 0

If you look closer, you will realize that the GetCommandLineA call was originated from call dword

ptr ds:[741300].

This is quite interesting, but for the moment let’s focus on our current target (reaching the OEP).
Since we assumed that the GetCommandLineA APl is in the function where the OEP resides, we can

scroll up a little bit till the start of the cu

™ | UUS YL HD

L -)

int3

int3

int3

int3

push ebp

mow ebp, esp
push FFFFFFFF

rrent function, and we will finally be at our destination:

0044 DCAC CiC

0044DCAD CiC

0044DCAE CiC

004 4DCAF CiC

0044DCED EE

0044DZEL SBEC
0044DCE3 &4 FF
0044DCES 63 70454600

push _start.454570

00440CEA 65 D4AE4400 push _start.44AED4
0044DCEF 64:A1 00000000 moyy eax, dword prtr @l [0]
0044DCCE co push eax

0044DCCE 6418925 00000000 mow dword ptr @@ [0],esp
00440CCD E3C4 A4 add esp,FFFFFFA4
0044DC00 £3 push ehbx

0044DCD01 e push esi

Perfect, now we know that 0x44DCBO0 is the OEP. We need a way to halt the code execution right
there.

PAY ATTENTION: it’s mandatory to break the OEP when dumping from memory! Otherwise, the
resulting executable will not work, as it will contain data related to the current execution.

If we try to seta breakpoint at that address, after restarting the debugger, the SecuROM loader will
detect it and will cause and endless loop. No matter if the breakpoint is hardware-based: it will be
still detected.

If we restart the debugger once more and we go to the address where the OEP resides BEFORE
running the SecuROM loader, we will notice a very interesting thing:

® | 0044DCAE 1863 31 sbb byte ptr ds:[ebx+31],ah
& | 00440CAE EE AB in eax, AR

00440CEQ ai EG push FFFFFFEE
e [0044DCE2 4E inc esi
® 004403 ~ ¥z D07 jb _start.d44DCEC
® | 0044DCES 2B30 sub esi,dword ptr ds:[eax]
®|00440CE7 EE 28 in eax,z&
#|0044DCEB2 BS GE49CC3C Mo eaw, I5CC496E
@ | 00440CEBE FE
|0044DCEBF EF FO40CFEBA mow edi, BACF40F0
®|0044DCC4 3AEE 4E cmp ah, byte ptr ss:[[ebp+4E]
& 00440CCF 8 4403 20 enter D244,20
® || 0044DCCE 2z xchg edx,eax

This code is completely different from what we expected to see! It is reasonable to think that this is
encrypted memory and that it will be overwritten by the SecuROM loader during the boot phase.

On Windows, processes can modify memory thanks to the WriteProcessMemory API, which has the
following signature:

BOOL WritePro
[in]
[in] LPVOID 1pBa
[in] LPCVOID lpBuffer,

[in] SIZE_T nSize,
[out] SIZE_T *1pNumberOfBytesWritten
)i

Great, let’s set a breakpoint on WriteProcessMemory and restart the debugger!
The 3rd hit is the correct one: we are sure about this since we see from the stack that the

IpBaseAddress (the address where the data will be written) is right next to our OEP:
007 2F&ES | return Lo _start.m
FFFFFFFF| return to FFFFFFFF
O0440BEO| _start.00440BEO
OOCES0E0

ooooozon

[B T i o o P

0012 F7F&d
O01ZF7F&s
0012 F e’
ooO1zFFF0

a1 S ETT A

At OxCE8050 there is the buffer that will be written. Right click on it and select “Follow DWORD in

disassembler”:

‘o ||0ODCESOSO SCE1 mow ecx, il

®||0DCESOS2 46 iNC es5i

®||00CESOS3 0033 add byte ptr ds:[ebx],dh
#||00CESOSE Dzes SE sh1 byte ptr ds:[esi-75],c]
®||0DZESO5E 14 41 adc al,41

® (|00ZESOEA S53EZ 0OF and ed=x, s

@ ||00CESOED 8955 EC mow dwaord ptr ss:[ebp-14], ed=
@ |00CESCOED 370 EC 00 cmp dword ptr ss:[ebp-14],0
-@ (|ODZESOE « 74 0B Jje CESOQFL

#|00CES0EE SB45 08 movw eax, dword ptr ssi[ebp+s]

We are exactly inside the buffer that will be written replacing the memory starting from 0x44DBBO.
Finding our OEP inside the buffer at this point is easy: we can add to the current address (OxCE8050)
the difference between 0x44DCBO (address of the OEP, found previously) and 0x44DBBO (base
address where the buffer will be written to): 0xCE8150.

Indeed, finally at this address we find our OEP inside the buffer:

®(|00ZES14E i int3

®||00CES14F ZiZ int3

» |00OCES1E0 gt push ebp

®|00CES1E1 SBEC mov ebp,esp

@ (|00CES1E3 sh FF push FFFFFFFF

& (|00ZESL1EE 55 70454600 push _start.4s4570

@ (|[00ZES1EA 55 D4AE4400 push _start.44AED4
®||00CESLEF S4:41 00000000 mov eax, dword ptr [l [0]
®||00CES1ES 50 push eax

®||00CES1ES 64:5925 00000000 mov dword ptr [@:[0],esp
& (|00ZES1:D S53C4 A4 add esp,FFFFFFA4
®|00CES1FO g3 push ehx

®|00CESLFL L& push esi

®|00CESL1F2 57 pushdedid . .

Great! To halt the execution atthe OEP, we can modify the buffer, replacing the first two bytes with
EBFE (infinite loop). In this way the buffer will be written with our patch and once the execution flow
reaches the OEP, it will get stuck right there in our infinite loop. All that remains at that point is to
seta breakpointto block the execution and restore the original bytes. Let's proceed by patching the
following bytes:

® (|O0CES14F iz int3
-] » |DOCES150 EE FE jmp CES150
o |00CEEL1EZ EC in al,d=
® (|O0CES1E 3 &4 FF push FFFFFFFF
® |O0CES1EE &5 FO454&00 push _start.4s4570
® (|O0CESL1E A &5 D4AE4400 push _start.445ED04
|00CES1S5F &4:1A1 Q0000000 mov ea, dword pte §ll: [0]
|00CEE1sE ca push eax
®|00CES1cs 64:8925 oooooooo mov dword ptr [l:[0].es5p

Just cI|ck on RUN and let the SecuROM loader complete its job. We can remove the breakpoint on
WriteProcessMemory before we run our target executable again, as we don’t need it any longer.

Wait a few seconds and then click on PAUSE. We willend up in a Ioop exactly at the OEP:

L] DD44DCAD CC int3
® (00440 AE ZC int3
& ((0044D0CAF i int3
0044 0CED EE FE jmp _start,440CED
#&|(0044DCB2 EC in al,d=
®(00440CE3 &A FF push FFFFFFFF
@ (00440 EE B8 FO454600 push _start.454570
®((0044DZEA &3 D4AE4400 push _start.444E04
®|(0044DCEF c4:41 00000000 mow eax, dword ptr Bl [0]
® || 0044DCCS 50 push B —
Let’s set a breakpoint at 0x44DCBO and restore the original opcodes (558B)
] DD44DCAD CC int3
® || 00440 AE cC int3
& |[0044DCAF i int3
EIF Erfc: o LW 004 4 DCED 55 push ebp
®|0044DCEL SEEC maoyw ebp, esp
®|(00440CE3F &A FF push FFFFFFFF
®|(00440CEE 68 70454600 push _start.4&4570
® | 0044D0CEA &3 D4AE4400 push _start.44AED4
#|0044DCEF £4:41 00000000 mow eas, dword ptr [l [0]
®||0044D0CCS 50 push EED-CZ —

Perfect, the execution flow is currently stuck at the OEP ... just like we wantedI

If we now try to dump the binary with Scylla, we will obtain an executable that crashes at the first
call (theoretically a GetVersion). We need to figure out what SecuROM did to the APIs used by the
game (remember: we already found a suspicious call when we used a breakpoint on
GetCommandLineA earlier).

If you are usinga VM, | suggest creating a snapshot of the current state, so after understanding what
happenstothe APIs, we can quickly restore everything back to the OEP without having to start over

(a special thanks goes to Antelox for recommending me this technique).

Let’ s process by steppmg some instructions until we get to the first call:

LR SN LS R HUSTI 251
@ lo0440C02 5? push edi
@ (00440203 Z955 ES mow dword ptr ss:[ebp-18],es5p
e 00440 De FFL1: 00127400 call dword ptr ds:[741200]
®(l0044DCDC A3 SCCE4700 mow dword ptr ds:[47CESC], eax
@ ||l0044DCEL A1 SCCE4700 mow eax, dward ptr ds:[47CESC]

It would have been reasonable to expect a call to GetVersion, but instead we are in front of a call
that takes us to a function located in the .cms_t segment.
Let’s click on step into to enter in this function to study what’s happening here.

We realize that we are dealing with a particular function, there are also some calls to timeGetTime
probably with the aim of detecting if we are spending time stepping between instructions with the

debugger.

If we scroll down, we notice that before the classic RET, there is a very suspicious instruction, a jmp

eax:

ULy sUs s
oorFI0271
ooFzozre
oorF30273
0oy 3027E5
00730276
ooFI027s
ooyF30zyo
O072027A

00F3027E

AATaAT TR

pup
pop
pop
yyluirs
pop
jmp
pop
pop
pop

(=4 NN}
251
ehx
esp, ebp
ebp
B a
edi
25
ks

mow esp,ebp

L

[Ty

This already gives us some clues about what is going on here (especially if you have read my

technical paper about Laserlock!) @
We put a breakpoint on the jump and press RUN.
Once we hit the Breakpoint, we check the EAX register:

Hide FFU

E&x
EEX

EiCx
EDx
EEF
ESF

JCEllz2eA
JEFDFO00
001440320
JCOEBE140
001z Fy AaC
00l12F7 30

<kernel3z.aetversion:
SL"=11=11%M8"

ntdl1.7Z35E140

Here it is, the call we expected! It will be reached thanks to that jump!

We can run a second test by looking for another call at 0x00741300 immediately after the OEP. If
you remember, while we were looking for the OEP we had set a breakpoint on GetCommandLineA
and the call where execution was blocked originated from 0x0044DD50. At that address we have a
call dword ptr ds:[741300]:

- T TR T L

._":..]
L]

00440044
00440046
00440050
0044005 &
0044005 E

T T

CF45 FC 0o0oo0oaoo
ES 20FBOOOO

FF1S 00137400

AZ 18317200

EZ FOFa0000

(SN L] l__"'.','l'

moy dword ptr ss:[ebp-4],0
call _start.455&870

call dword ptr ds:[7413200]
mow dword ptr ds:[F23118],eax
call start.455&50

Let’s continue the execution and follow this call. We will obviously come back to the function we
have justanalysed and in the end, we will find ourselves stuck again onthe jmp eax (if you have kept
the breakpoint active). Now let's check the EAX register:

Hide FFU

E&x FCELzFAD
EEx FFFO7O00 Ll =2
ECx FFFD7000

<kernel3z.GetCanmmandLliness

HEHH

L= = ah

Here is the reference to the GetCommandLineA API.

Now we no longer have any doubts: SecuROM has replaced the APls used by the game with its own
function (located in the .cms_t segment) which, based on the source address of the call, calculates
the requested APl and reaches it via a jump.

For those who want to understand in detail how the correct APIs are retrieved, you can study the
disassembled part enclosed within the CriticalSection of that function, paying attention to the
various precautions used to make debugging more complicated (such as timeGetTime).

At this point it would be reasonable to think of writing a few assembly lines to loop through the
entire .text segmentlooking for the SecuROM calls, and after having called them to retrieve the right
APIs, patch them with the correct addresses just obtained.

However, there is a big problem: the address stored in EAX at the moment of the jump does not
pass fromthe relative thunk in the /AT, but instead it is an absolute jump to the requested function!
We cannot replace it overwriting the one in the SecuROM call, because it will change (due to being
dynamic).

We need the address of the corresponding thunk in the /IAT.

So, this is the idea:

1) Let's loop through the .text segment looking for the SecuROM calls

2) Assoon as we find a SecuROM call we jump into it

3) We hookthe jmp eax instruction, with a jump to get back to our assembly code (getting the
direct address of the APl we are resolving)

4) Using the direct address of the API (stored in EAX), we loop through the IAT looking for the
corresponding thunk

5) Once found it, we patch the function in the .text segment to call the address of the thunk,
defeating SecuROM.

Finding the starting address of the IAT is an extremely easy operation: we can go to the relevant
section in the Memory Map tab, select the .idata segment and click on “Follow in dump”. Now we
will find the first occurrences of addresses to the various APls used in our target:

ooFzAdb0 | A3 CC GF S2 1B OB GF S2|\00 00 00 00|00 0o oo oo
QOF2A4C0 | 00 00 00 00|00 OO0 o0 Qojo0 00 o o0fo0 0o oo 00
ooFzA400 | 00 00 00 00|00 00 OO o000 00 00 oo|o0 0o oo oo
OoOF2A4EQ | OO0 00 00 o002 RBI 21 72 |00 00 00 00|00 0d oo oo
QoOF2A4F0 |00 OO0 00 00|00 OO0 OO o000 00 00 oo|o0 0o oo oo
QoOF2AS00 | 00 00 00 00|00 OO0 00 o000 00 00 oo|o00 0o oo oo
OQoOF2AS10 |00 00 00 o002 47 ES 72|00 00 00 00|00 0o oo oo
goFzASZ0 |00 OO0 00 00|00 OO0 OO o000 00 00 oo|o0 0o oo oo
QOF2AR30 | 00 00 00 00|00 OO0 OO o000 00 00 oo|o0 0o oo oo
QoFzAS40 | 00 00 00 o0l el B4 77|63 oA B4 77100 00 00 00
QOF2ASE0 | 00 00 00 00|00 OO0 OO o000 00 00 oo|o0 0o oo oo
goF2ARE0 |00 00 00 00|00 00 a0 Oo0|00 a0 00 Oo0|00 0d oo oo
QOF2ASFO | 00 00 00 00|00 OO0 o0 oo\ B0 FO 80 ~C|FA of S1 7
ooFzARE0 | EE 24 80 SO\ BE FC S0 SO |28 1A S0 SOl gR 22 S0 S
ooFzAco0 | E2 10 82 SO |1z FF S0 S |Aap 2F 81 FC|FS &0 S92 o

The IAT starts at 0x72A4B0 (0x736FCCA3 is the address of DirectDrawCreate in this case). As we can
see this IAT is a bit peculiar: it is full of free spaces.

Alternatively, we could have used Scylla to look up the address of the /AT for us.

Scrolling down a bit in the dump we can see that the /AT ends up at the address 0x72A87F:

0072 AFEQ
0072 ATFO
0072 AE00

Ba 70 BY TG

Cl 7o Bl e

2B S4 B1 6

22 G2 Bl FE
20 B0 Bl FE

AL FF Bl 76

45 A8 Bl S0

04 0z Bl 76

E2 24 BO 7o

e 20 Bl 7
ac Al B0 78
El 28 EOD 7&

ooFzAasln
Oo7F2AE20
OoF2AaE30
Oo7Fz2Aas40
007z2As50
ooF2Ase0
QO72ASF0
007z ASE0
OoF2Aas30
0072 ASAD

Es 42 Bl ¢
Eg SF B0 Fé

oo o0 0o oo
oo o0 oo oo
oo o0 0o oo
oo o0 0o oo
o2 2A 40 77
oo o0 0o oo
oo o0 oo oo
oo o0 0o oo
OOF2A8B0 | aC 74 69 42|72 74 60 B4 |6F BF 69 64|65 42 58 61
QOF2ASCO | 72 00 &4 02|52 &5 74 45|72 72 6F 72 (4D &F g4 &%

The last thing we need is to find a code cave where to put our own assembly code.

ELEc B 76
Ol 52 BO Fa

o0 oo oo oo
o0 0o oo oo
o0 oo oo oo
o0 oo oo oo
ZE QS 40 77
o0 oo oo oo
o0 oo oo oo
E4 01 40 75

B ne Bl 7o |El QF Bl 7C
Fo FE B0 Fé|gé Fa BO 7a

(]|
oo
oo
oo
oo
(]|
oo

oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo

(]|
oo
oo
oo
oo
(]|
oo

oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
an
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo

From the MemoryMap tab we choose a memory area that is marked as PRV, that is free and that is
large enough for our purpose. | chose the one starting 0xBA000O. Before continuing, remember to
right-click on this section, choose Set Page Memory Rights and select Full Access:

Set Page Memory Rights

Rights

Address | Rights

) NO ACCESS
() READ ONLY

) READ WRITE

() EXECUTE

) EXECIUTE READ

(%) FULL ACCESS

) WRITE COPY

() EXECUTE WRITE COPY

[Set Rights

I

[Select ALL Deselect ALL] [] PAGE GLARD

Press CTRL ar SHIFT key to select multiple pages

| | [Cancel

We confirm by clicking Set Rights.

Since we're going to patch the calls in the text segment (replacing the usual SecuROM proxy calls
with the real APl addresses), let's make sure it has the writeable flag correctly set.

We are ready to write our code now, so let’s go to 0xBA000O and insert the following code:

e e
 E R E N E N N NENENENJN.]

BD 00104000 mow eCx, _Start.401l000
OOEADOOS 5135 FF1E500132 cmp dword ptr ds:[ecx],120015FF
aoeAOOQOE 75 ZB jne BADO3ZS
0OBADOOD S075 04 74 cmp byte ptr ds:[ecx+4],74
ooepAOO0L1l 7525 jne BADO3ZS
OOBADOLZ 5900 F000EA00 mow dword ptr ds:[BAOOSO0],ecx stare ecx
OOEAQD0LD FFE1 jmp ecx jump to the securom call
OOBADOLE SEOD F000EBA00 mow ecx, dward ptr ds:[BA00S0] restore ecx (return fraoam hook)
OOEAQDZL EE EO&47200 moy ebe, <_start.alirectirawcreates [mowv ebx, 0xZ72A4B0 [(IAT START)
OOBADDZE 2903 cp dword ptr ds:[eb=],eax
oopAOD2E 74 0B je BAODODZL
OOBADDZA 43 inc ehx
ooepAODZE S1FE JFAS7200 cmp ebx, _start.7zAsSrF
OO0BAODZ1 7B F2 Jne BADDZE
D 02 ing = ERROR ! ! THUNK HOT FOUND!!
OOBADDZE Z289 02 moy dword ptr ds:[ecx+z], ebx
00EADOD3S 41 inc ecx
O0BAOOZS S1F% F22F4600 Cmp ecx, _Sstart.4E2FF2
O0EA002F 54 jne BADOOS
0D 02 int = COMFLETED!
NNR&NN43 nnnn Aadd brete ntr ds:Teraw Al

This is what the above code actually does:

First it puts the starting address of the text section into the ECX register. The bytes are then
compared against OxFF15001374, i.e., with the call to the SecuROM function (performed in
two separate cmp instructions to check all the related bytes): If there is no match the jne
branch will be followed and the address in ECX will be incremented by 1 to check for the
next byte.

If, on the other hand, we are in the front of a SecuROM call, we save the current address in
the ECX register (which tells us which byte of the .text section we have arrived at) and jump
into it.

Once we reach the now famous jmp eax located in the SecuROM function we will set a hook
(in a few minutes) to automatically jump back to 0OxBAOO1B. At this point we have the direct
address of the requested APl inside the EAX register.

Now we restore the ECX register and load the start address of the IAT into the EBX register.

Let's loop through the IAT until we find the thunk that points to the address contained in
EAX (EBX will obviously be incremented each time: If none of the thunks contain the API
we're trying to fix, then we're in big trouble (/NT 3 at 0xBA0033), but obviously this should
NOT happen.

If the thunk has been found, we will jump to address 0xBA0035, where we will replace the
bytes related to the SecuROM call with those of the correct thunk. At this point we can go
back to continue scrolling the .text segment looking for the remaining calls.

When the .text segmentends (ECXwill be 0x462FF9, i.e., the last address of the segment -6,
which is the size of the call, in bytes), we are done and can proceed with the dump!

Before running the code, remember to right-click on the line BAOO0O and choose “Set New Origin
Here”. Now let's set our hook: move to 0x730276 (the address where the jmp eax is located), right
click on it and choose “Breakpoint” -> “Set Hardware on Execution”. Let's move to the Breakpoints
tab, right click on the hardware breakpoint we just created and choose Edit. Let's configure it in this
way:

Edit Hardware Breakpoint _start.00730276

Break Condition: |

Log Texk: |

Log Condition: |

Command Condition: |

Marme: |

|
|
|
Command Texk: |ei|:| = O0BADO1E;run |
|
|
|

Hit Count: o z

[] singleshoot [Silent [] Fast Resume [Save] [Cancel]

I I
This way once the BP is triggered, we will automatically return to our code (at address OxBAOO1B).

PAY ATTENTION: only use a hardware breakpoint in this case, otherwise the program will crash (the
presence of software breakpoints will be detected).

We are ready to run our code, move to 0xBA00O0O and click RUN.

Once the execution is complete, we will be stuck at 0OxBA0041:

OoEAQOOOQ ES 00104000 mow ecx,_Start.401000
O0BAQOOS 5139 FFl50012 cmp dword ptr ds:[ecx],l130015FF
OoOBAO0OE w“ 7R OZB jne BAOOZE
OOBAQOOD 079 04 74 cmp byte ptr ds:[ec=+4],74
OoOBA0011 w FRO2E jne BAOOZE
00BAQDLZ 5200 2000BADOD moyw dword ptr ds:[BADODS0],eCx store ecx
00BAQOLS ~ FFE1 imp ecx jump to the sect
00BAQOLE SEOD 2000BADOD moy ecx, dword ptr ds:[BA00S0] restore ecx [(ret
O0BAQDZL EE EBOA47200 moy ebx,<_start.alirectiraw-reates |[mov ebx, 0x<7F2A4E
O0BAQDZE 2203 cmp dword ptr ds:[ebx],eax
OOBAO02 S « 74 0B je BADOZS
OOBAODDZA 43 inc ebx
OoOBAO02E S1FE FFAEFZOO0 Chp ebx,_start,72A37F
OOBA003 1 ~ ¥R F3 jne BAOOZE

0 o032 int 2 ERROR ! ! THUME NC
O0BAQD3E 5953 02 moy dword ptr ds:[ecx+2],ebx
OOBAODOZS 41 inC ecx
OoOBAO03 3 S1F5% FR2F4&00 Cmp ecs,_start.4&62FF3
OOBA002F ~ TR 24 jne EBAOOOS

0 032 int = COMFLETED!
O0BAQDE3 oooo add byte ptr ds:[eax],al
OOBAQDD45 oooo add byte ptr ds:[eax],al
O0BAQD47 o000 add byte ptr ds:[eax],al
ANPEANNAS annn add kwtre mtr desTa=ae1 21

We are almost there! Let's launch Scylla, choose the right process (_start.exe), set the OEP, the
address of the IAT and its size:

Scylla x86 v0.9.8

File Imports Trace Misc Help

Attach to an active process

2472 - _skart.exe - C\Program Files\Arabian_start. exe w | [Pick DLL]

Impoarks

ddraw.dll {Z) FThunk; 00324460
dinput.dil {13 FThunk: 003244E4
dsound. dll {13 FThunk: 00324514
gdizz.dll {2 FThunk: 00524544
kernel32.dll (30) FThunk: 00324575
user32.dll (273 FThunk: 00324724
wirmm, dll {263 FThunk: 00324700
ole3z . dil (21 FThunk: 00324573

- B B B -
A T

[Shaws Invalid] [Shu:uw Suspect]

IAT Info Actions Dump

OEP | 44DCED |

IAT Autosearch [Durmp] [PE Febuild]

VA | 0072A4B0

Get Imparks ’ Fix D]
Size | 300 | S

Log

TAT parsing finished, found 141 walid APIs, missed 0 APIs

DIRECT IMPORTS - Found 0 possible direct imporks with 0 unigue APIs!

Imports: 141 " Imvalid: 0 Imagebase; 00400000 _skart.exe
Let’s click on Get Imports, then on Dump and finally on Fix Dump.

Finally, we will have an executable free from SecuROM

Let's finish the job:

Our executable works perfectly and SecuROM is just past the memory addresses used by our new
executable. However, if we want to be true perfectionists, we can make it slightly smaller by
removing those two sections used by the SecuROM loader that now only take up useless space.

Let's load our binary into CFF Explorer and move to the Section Headers tab. Select the .cms_t and
.cms_d sections, right click and choose Delete Section (Header And Data):

) B Optional Header rdata 00003000 000&3000 Qooo1EOO 000&1600
] Data Directories [x] data 002C4000 00066000 0000500 00063400
— = .idata 00o0z000 0032A000 aooo1400 000&C000
S ISectlorE)Headers [] q
— miport Directony
L (O3 Resource Directary .cmis_k 00014000 0032000 Qoo12a00 00060400
L) Relacation Directary .cms_d 0002C000 00340000 000ZBE00 0007FEDD
— |2 Debug Directory \idata Change Section Flags 01000 000AB400
| &y
_;‘f‘“‘dd“’“ Converter rsre Add Section (Header Orly) D0BO0 ODDAC400
[g Pependency Walker | i DSEO0 DDDACCOD
- -.‘L Hex Editor ‘Feloc Add Section (Empty Space)
— 1 Identifier ' ection (File Dats
.lld i SCY Add Section (File Data) O0EQD O00BSA00
— b Import Adder Delete Section (Header Onlky) _
— '*13_-, Quick Disassembler <

¥ . Delete Section (Header And Data
— *11-, Rebuilder {) E
— %, Resource Editor This sectio Rebuild Image Size
L— 45, UPX Utility

Rebuild PE Header

Dump Seckion

Let's save the new executable (it will be much smaller) and we're DONE!

Credits:

| would like to thank again the legendary Antelox for suggesting me the snapshot technique on VM.
Undoubtedly a great way to save a lot of time.

A big thank you goes to m00kOO for reviewing and fixing the english translation of this technical
paper!!

Conclusion:

As we have seen SecuROM *new?* 4.48.00.004 conceptually shares something with Laserlock.
Ultimately it is a very didactic DRM from which we have certainly learned something.

Thank you for reading this document @

Luca

