
GAME: Arabian Nights [https://en.wikipedia.org/wiki/Arabian_Nights_(2001_video_game)]

Protection: SecuROM *new* 4.48.00.0004

Author: Luca D’Amico - V1.0 - 5 May 2022 (English version 11 March 2023)

DISCLAIMER:

All information contained in this technical document is published for general information purp oses only and in

good faith. Any trademarks mentioned here are registered or copyrighted by their respective owners.

I make no warranties about the completeness, correctness, accuracy and reliability of this technical document.

This technical document is provided "AS IS" without warranty of any kind. Any action you take upon the

information you find on this document is strictly at your own risk. Under no circumstances I will be held

responsible or liable in any way for any damages, losses, costs or liabilities whatsoever resulting or arising

directly or indirectly from your use of this technical document. You alone are fully responsible for your actions.

You will need:

- Windows XP VM (I used VMware [https://www.vmware.com/products/workstation-player.html])

- x64dbg (x32dbg) [https://x64dbg.com/]

- CFF Explorer [https://ntcore.com/?page_id=388]

- Original game disc (you need the ORIGINAL, otherwise this will not work)

Before you start:

SecuROM protected games may not work properly on Windows versions newer than XP.

As we already experienced with SafeDisc, once we removed this DRM, the game works perfectly

even on Windows 11.

This DRM works by replacing (proxying) various Windows APIs used by the game, with a function

that after running some checks, will reach the requested API with a jump instruction. This jump will

be absolute, without passing from the relative IAT thunk, so when we rebuild the imports, we will

need to loop through the IAT to find the correct thunk, get its address, and then replace the

SecuROM call in the .text segment with it.

There’s also an initial layer of encryption (we will need the original game disc to decrypt it) and

various anti-debugging techniques that will make it harder to reach the Original Entry Point (OEP).

Let’s begin:

Install the game selecting the FULL install option. Once installed load the main executable

(_start.exe) inside the debugger.

We can see that the entry point is located at 0x737CFD.

If we go to the Memory Map tab, we can see that we are currently located in the .cms_t section:

We can suppose that the code of our game is in the .text segment and what we are going to execute

is the SecuROM loader.

If we try to click on RUN, we will be constantly blocked with exceptions of various types: this is only

one of the various techniques put in place to slow us down. This problem can be easily fixed by

configuring the debugger to ignore all exceptions:

I also recommend unchecking “Log exception”, because the huge number of exceptions will

extremely slow down the execution. Now we are ready to start.

As in most cases when trying to remove a protection of this type, the first step is to be able to reach

the OEP.

My first attempt was to set a hardware breakpoint on the .text segment on execution: unfortunately

thanks to the various anti-debugging techniques used, this operation will cause an endless loop of

the SecuROM loader.

So, I decided to proceed in two steps:

1) Find out at what address the OEP is located

2) Find a way to reach said address

To get closer to the OEP, I’ve set a breakpoint on an API that is usually located near the Entry Point:

GetCommandLineA.

Each time this breakpoint is triggered, we must click on “Run to user code” to see where the call

originates from. Once we hit the breakpoint for the 3rd time, we are finally located inside the .text

segment:

If you look closer, you will realize that the GetCommandLineA call was originated from call dword

ptr ds:[741300].

This is quite interesting, but for the moment let’s focus on our current target (reaching the OEP).

Since we assumed that the GetCommandLineA API is in the function where the OEP resides, we can

scroll up a little bit till the start of the current function, and we will finally be at our destination:

Perfect, now we know that 0x44DCB0 is the OEP. We need a way to halt the code execution right

there.

PAY ATTENTION: it’s mandatory to break the OEP when dumping from memory! Otherwise, the

resulting executable will not work, as it will contain data related to the current execution.

If we try to set a breakpoint at that address, after restarting the debugger, the SecuROM loader will

detect it and will cause and endless loop. No matter if the breakpoint is hardware-based: it will be

still detected.

If we restart the debugger once more and we go to the address where the OEP resides BEFORE

running the SecuROM loader, we will notice a very interesting thing:

This code is completely different from what we expected to see! It is reasonable to think that this is

encrypted memory and that it will be overwritten by the SecuROM loader during the boot phase.

On Windows, processes can modify memory thanks to the WriteProcessMemory API, which has the

following signature:

Great, let’s set a breakpoint on WriteProcessMemory and restart the debugger!

The 3rd hit is the correct one: we are sure about this since we see from the stack that the

lpBaseAddress (the address where the data will be written) is right next to our OEP:

At 0xCE8050 there is the buffer that will be written. Right click on it and select “Follow DWORD in

disassembler”:

We are exactly inside the buffer that will be written replacing the memory starting from 0x44DBB0.

Finding our OEP inside the buffer at this point is easy: we can add to the current address (0xCE8050)

the difference between 0x44DCB0 (address of the OEP, found previously) and 0x44DBB0 (base

address where the buffer will be written to): 0xCE8150.

Indeed, finally at this address we find our OEP inside the buffer:

Great! To halt the execution at the OEP, we can modify the buffer, replacing the first two bytes with

EBFE (infinite loop). In this way the buffer will be written with our patch and once the execution flow

reaches the OEP, it will get stuck right there in our infinite loop. All that remains at that point is to

set a breakpoint to block the execution and restore the original bytes. Let's proceed by patching the

following bytes:

Just click on RUN and let the SecuROM loader complete its job. We can remove the breakpoint on

WriteProcessMemory before we run our target executable again, as we don’t need it any longer.

Wait a few seconds and then click on PAUSE. We will end up in a loop exactly at the OEP:

Let’s set a breakpoint at 0x44DCB0 and restore the original opcodes (558B):

Perfect, the execution flow is currently stuck at the OEP … just like we wanted!

If we now try to dump the binary with Scylla, we will obtain an executable that crashes at the first

call (theoretically a GetVersion). We need to figure out what SecuROM did to the APIs used by the

game (remember: we already found a suspicious call when we used a breakpoint on

GetCommandLineA earlier).

If you are using a VM, I suggest creating a snapshot of the current state, so after understanding what

happens to the APIs, we can quickly restore everything back to the OEP without having to start over

(a special thanks goes to Antelox for recommending me this technique).

Let’s process by stepping some instructions until we get to the first call:

It would have been reasonable to expect a call to GetVersion, but instead we are in front of a call

that takes us to a function located in the .cms_t segment.

Let’s click on step into to enter in this function to study what’s happening here.

We realize that we are dealing with a particular function, there are also some calls to timeGetTime

probably with the aim of detecting if we are spending time stepping between instructions with the

debugger.

If we scroll down, we notice that before the classic RET, there is a very suspicious instruction, a jmp

eax:

This already gives us some clues about what is going on here (especially if you have read my

technical paper about Laserlock!)

We put a breakpoint on the jump and press RUN.

Once we hit the Breakpoint, we check the EAX register:

Here it is, the call we expected! It will be reached thanks to that jump!

We can run a second test by looking for another call at 0x00741300 immediately after the OEP. If

you remember, while we were looking for the OEP we had set a breakpoint on GetCommandLineA

and the call where execution was blocked originated from 0x0044DD50. At that address we have a

call dword ptr ds:[741300]:

Let’s continue the execution and follow this call. We will obviously come back to the function we

have just analysed and in the end, we will find ourselves stuck again on the jmp eax (if you have kept

the breakpoint active). Now let's check the EAX register:

Here is the reference to the GetCommandLineA API.

Now we no longer have any doubts: SecuROM has replaced the APIs used by the game with its own

function (located in the .cms_t segment) which, based on the source address of the call, calculates

the requested API and reaches it via a jump.

For those who want to understand in detail how the correct APIs are retrieved, you can study the

disassembled part enclosed within the CriticalSection of that function, paying attention to the

various precautions used to make debugging more complicated (such as timeGetTime).

At this point it would be reasonable to think of writing a few assembly lines to loop through the

entire .text segment looking for the SecuROM calls, and after having called them to retrieve the right

APIs, patch them with the correct addresses just obtained.

However, there is a big problem: the address stored in EAX at the moment of the jump does not

pass from the relative thunk in the IAT, but instead it is an absolute jump to the requested function!

We cannot replace it overwriting the one in the SecuROM call, because it will change (due to being

dynamic).

We need the address of the corresponding thunk in the IAT.

So, this is the idea:

1) Let's loop through the .text segment looking for the SecuROM calls

2) As soon as we find a SecuROM call we jump into it

3) We hook the jmp eax instruction, with a jump to get back to our assembly code (getting the

direct address of the API we are resolving)

4) Using the direct address of the API (stored in EAX), we loop through the IAT looking for the

corresponding thunk

5) Once found it, we patch the function in the .text segment to call the address of the thunk,

defeating SecuROM.

Finding the starting address of the IAT is an extremely easy operation: we can go to the relevant

section in the Memory Map tab, select the .idata segment and click on “Follow in dump”. Now we

will find the first occurrences of addresses to the various APIs used in our target:

The IAT starts at 0x72A4B0 (0x736FCCA3 is the address of DirectDrawCreate in this case). As we can

see this IAT is a bit peculiar: it is full of free spaces.

Alternatively, we could have used Scylla to look up the address of the IAT for us.

Scrolling down a bit in the dump we can see that the IAT ends up at the address 0x72A87F:

The last thing we need is to find a code cave where to put our own assembly code.

From the MemoryMap tab we choose a memory area that is marked as PRV, that is free and that is

large enough for our purpose. I chose the one starting 0xBA0000. Before continuing, remember to

right-click on this section, choose Set Page Memory Rights and select Full Access:

We confirm by clicking Set Rights.

Since we're going to patch the calls in the text segment (replacing the usual SecuROM proxy calls

with the real API addresses), let's make sure it has the writeable flag correctly set.

We are ready to write our code now, so let’s go to 0xBA0000 and insert the following code:

This is what the above code actually does:

• First it puts the starting address of the text section into the ECX register. The bytes are then

compared against 0xFF15001374, i.e., with the call to the SecuROM function (performed in

two separate cmp instructions to check all the related bytes): If there is no match the jne

branch will be followed and the address in ECX will be incremented by 1 to check for the

next byte.

• If, on the other hand, we are in the front of a SecuROM call, we save the current address in

the ECX register (which tells us which byte of the .text section we have arrived at) and jump

into it.

• Once we reach the now famous jmp eax located in the SecuROM function we will set a hook

(in a few minutes) to automatically jump back to 0xBA001B. At this point we have the direct

address of the requested API inside the EAX register.

• Now we restore the ECX register and load the start address of the IAT into the EBX register.

• Let's loop through the IAT until we find the thunk that points to the address contained in

EAX (EBX will obviously be incremented each time: If none of the thunks contain the API

we're trying to fix, then we're in big trouble (INT 3 at 0xBA0033), but obviously this should

NOT happen.

• If the thunk has been found, we will jump to address 0xBA0035, where we will replace the

bytes related to the SecuROM call with those of the correct thunk. At this point we can go

back to continue scrolling the .text segment looking for the remaining calls.

• When the .text segment ends (ECX will be 0x462FF9, i.e., the last address of the segment -6,

which is the size of the call, in bytes), we are done and can proceed with the dump!

Before running the code, remember to right-click on the line BA0000 and choose “Set New Origin

Here”. Now let's set our hook: move to 0x730276 (the address where the jmp eax is located), right

click on it and choose “Breakpoint” -> “Set Hardware on Execution”. Let's move to the Breakpoints

tab, right click on the hardware breakpoint we just created and choose Edit. Let's configure it in this

way:

This way once the BP is triggered, we will automatically return to our code (at address 0xBA001B).

PAY ATTENTION: only use a hardware breakpoint in this case, otherwise the program will crash (the

presence of software breakpoints will be detected).

We are ready to run our code, move to 0xBA0000 and click RUN.

Once the execution is complete, we will be stuck at 0xBA0041:

We are almost there! Let's launch Scylla, choose the right process (_start.exe), set the OEP, the

address of the IAT and its size:

Let’s click on Get Imports, then on Dump and finally on Fix Dump.

Finally, we will have an executable free from SecuROM

Let's finish the job:

Our executable works perfectly and SecuROM is just past the memory addresses used by our new

executable. However, if we want to be true perfectionists, we can make it slightly smaller by

removing those two sections used by the SecuROM loader that now only take up useless space.

Let's load our binary into CFF Explorer and move to the Section Headers tab. Select the .cms_t and

.cms_d sections, right click and choose Delete Section (Header And Data):

Let's save the new executable (it will be much smaller) and we're DONE!

Credits:

I would like to thank again the legendary Antelox for suggesting me the snapshot technique on VM.

Undoubtedly a great way to save a lot of time.

A big thank you goes to m00k00 for reviewing and fixing the english translation of this technical

paper!!

Conclusion:

As we have seen SecuROM *new* 4.48.00.004 conceptually shares something with Laserlock.

Ultimately it is a very didactic DRM from which we have certainly learned something.

Thank you for reading this document

Luca

