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DISCLAIMER: 

All information contained in this technical document is published for general information purposes only and in 

good faith. 

Any trademarks mentioned here are registered or copyrighted by their respective owners. 

I make no warranties about the completeness, correctness, accuracy and reliability of this technical document. 

This technical document is provided "AS IS" without warranty of any kind. 

Any action you take upon the information you find on this document is strictly at your own risk. 

Under no circumstances I will be held responsible or liable in any way for any damages, losses, costs or 

liabilities whatsoever resulting or arising directly or indirectly from your use of this technical document. You 

alone are fully responsible for your actions. 

 

You will need: 

- Windows XP VM (I used VMware) 

- x64dbg (x32dbg) 

- Python 3 

- Original game disc (you need the ORIGINAL, otherwise this will not work) 

 

Before you start: 

Laserlock was a widely used copy-protection scheme during the late 1990s and early 2000s. 

The way it works is simple: some API calls will be replaced with a call to a function located in a DLL 

that is called like [gamearchlib].dll (in our case it is evo32lib.dll), that will retrieve the real API 

address, by checking the address where the call originated from. 

To defeat this protection, we will need to obtain all the correct API addresses used by the game and 

replace all the calls to the Laserlock DLL inside the game’s binary. Unfortunately, this is made a bit 

complicated due to numerous CRC checks in this library. 

 
Let’s begin: 

Install the game and load Evolva.exe into the debugger (make sure to keep the original disc in the 

drive), click RUN and the game should start just like usually: there isn't any anti-debugging checks in 

place. 

 

Reload the debugger. Once at the entry point of the module, you will see this: 

 

 
  



 

The first call is very suspicious: it would have been reasonable to expect a call to GetVersion, but 

instead we have a call to a function called CallDLL in the evo32lib.dll library: 

 

 
 

Let’s try to proceed by stepping within the disassembly and by entering into the call to check what's 

happening there. 

After some NOPs we'll get to the interesting part: 

 

 
 

Let’s keep stepping until we reach the instruction right after the call located at 0x10001D5A. Now 

check the return value stored in the EAX register: 

 

 
 

As expected, this call was originally a GetVersion call       

  



If we continue stepping, we will notice that the conditional jump located at 0x10001D6D will not be 

taken, and the function will end at the RET located at 0x10001D7E. Afterwards GetVersion will be 

called (directly from the RET, since its address was moved on the stack) 

 

We still don’t know the meaning of that conditional jump, but we will be back to this soon. 

When we will be back at the main module, we can continue stepping over all the instructions until 

we can follow the second call to CallDLL. 

Again, let’s keep stepping over all the instructions until we reach the one just right after the call 

located at 0x10001D5A. Then check the EAX register, again: 

 

 
 

Now it is quite clear what’s happening: these APIs, called by the game, were all replaced with the 

same function called CallDLL located in the evo32lib.dll. The CallDLL function will check from where 

the call was originated and will provide the correct API address needed by the game, which will then 

be executed using the RET instruction (because that address was moved on the stack at the right 

position). 

 

The first thing that would come to our minds is to find some free space to write a simple assembly 

routine to parse the .text segment finding all the calls to CallDLL, jumping into each of them and 

once we retrieved the correct API address (stored in EAX), patch the code to jump back to our 

assembly routine and finally fix the initial call with the correct address. 

Unfortunately, this will not work... 

Let’s try to put breakpoint at 0x10001D5F (right after the call that retrieves the correct API address), 

click RUN on the debugger each time it will break at that address and after a couple of iterations, the 

game will crash... 

Why? Because Laserlock will do some CRC checks on the game’s binary in memory, and if it will 

notice any modification (like patches, hooks and software breakpoints) it will return wrong API 

addresses. 

We can use hardware breakpoints (even if it only is possible to use at max 4 of them at the same 

time. They don’t alter the code at all, so they will not be detected!) to break at the right address and 

to fix the calls to make them point to the right functions, but there is another problem: 

Laserlock will also check the .text segment and if any patch is detected (like, obviously our patched 

bytes needed to fix the calls) the result will be a game crash. 

  



Let's take a moment to assess the overall situation:  

1) We know that the original API calls were all replaced with the same function called CallDLL 

inside the Laserlock DLL 

2) We know that CallDLL, after its checks, will retrieve the correct API based on the address 

where the original call originated from (this value is retrieved from the stack). 

3) The CallDLL code is checked against any modification. 

4) The .text segment code is also checked against any modification preventing us to fix the calls 

by patching them. 

5) Due to 3) and 4), we CAN’T use software breakpoints and we CAN’T patch anything. 

6) We still don’t know what’s the purpose of the conditional jump that takes place just after 

the call that retrieves the original API addresses 

 

This situation is a bit complex, huh? Welcome to the reverse engineering world        

 

Let’s start from point number 6: once we will understand what’s going on there, we can think of a 

way to solve everything else. 

 

The most practical method to figure out the difference between these two RETs, is to put a 

hardware breakpoint on the address of the last one (0x10001D8D): 

 

 
 

Once the execution will break, continue by stepping inside the API code until the return to the main 

module is reached. Once there, scroll up a few lines above and you will notice that the call to CallDLL 

has been modified (at 0x6E9764): 

 

 
 

It isn’t the usual call, indeed if we follow it, we will find this: 

 
 

Let’s restart the debugger and go straight to that address, we will see: 

 
During the execution, that call turned into a jump. 

 

What does this mean? The conditional jump we were analysing decides whether the current API 

must be reached via a call or a jump! 

 

We need to pay attention to this behaviour, because when we will fix all the calls, the ones that will 

take this conditional jump, needs to be turned into jumps! 

  



We now have everything we need to know. Keep in mind that we CANNOT patch anything and we 

CANNOT use software breakpoints. Instead, we will use hardware breakpoints in a creative way. 

We will log the address of the correct API, the address where the call originated from and the 

boolean value that decides whether the current API should be reached by a call or by a jump. 

Next, we will write a little Python script that will patch the binary, removing Laserlock. 

 

This is what we will do: 

1) We will write some assembly code to parse the .text segment, looking for all the calls to fix 

2) Once we will find a call to CallDLL we will jump at that address 

3) We will set the first hardware breakpoint at 0x10001D5F (right after the call that will 

retrieve the correct API, inside the CallDLL function), in order to get a log of the data that we 

need to fix the call later. 

4) We will set the second hardware breakpoint on the first RET, in order to alter the execution 

flow to jump back to our assembly code 

5) We will set the third hardware breakpoint on the second RET, in order to alter the execution 

flow to jump back to our assembly code (remember that if this RET is executed, the API will 

be reached from a JMP) 

6) Once we will have all the needed data logged, using some Python code we will “cold-patch” 

the game’s executable. Finally, we can remove the evo32lib.dll dependency from the EXE 

file.  

 

The first thing to do is to look for some free space where we can put our assembly code. I’ve found a 

nice code cave starting from 0x350000. Let’s click on the Memory Map tab, select the right entry 

(the one that starts from 0x350000) and right-click and select “Set Page Memory Rights”. Then select 

FULL ACCESS and click on Set Rights. 

Let’s return to the CPU View Tab, go to 0x350000, and carefully write this code: 

 

 
 

The first line stores the starting address of the .text segment in the ecx register. 

The CMP opcode checks if the dword pointed to by the address currently stored in ecx is a CallDLL 

call (if you pay attention to the bytes compared, you will notice that they are written in reverse, as 

the byte order is little endian). If there is no match, then ecx will be incremented by 1 in order to 

point to the next address. 

  



 

 Then there's another CMP, to check if we arrived at the end of .text segment. If there is a match, 

and we are in front of a call to CallDLL, we will first store the current address in some free memory 

(I’ve chosen 0x350050) and then we will jump into it, with the jmp ecx located at 0x350013.  

Once we will correctly set the hardware breakpoints inside CallDLL, we will jump back exactly at 

0x350015 and we will restore the previously saved address in ecx in order to continue our parsing of 

the .text segment. 

Let’s right-click on 0x350000 and select Set New Origin Here, so we can tell the debugger that it has 

to start from this address when we will hit RUN. Let’s put a breakpoint at 0x350024, so we can break 

here once all the APIs are logged. DO NOT USE int 3 here, otherwise the game will crash. 

 

Before we launch our assembly code, we have to properly set the hardware breakpoints in CallDLL: 

 

 
 

We have to set the first hardware breakpoint at 0x10001D5F in order to log the retrieved API, the 

address where the call was originated (located in the .text segment) from and the byte stored at 

0x100168EC (which will tell us if the API should be reached from a call or a jump). 

 

So, let’s right-click that address and select Breakpoint->Set Hardware on Execution, then head over 

to the Breakpoint tab, right-click the newly created breakpoint and select Edit. Let’s configure it this 

way in order to log all the data we need: 

 



 
 

If you are wondering why 0x6 is subtracted from the return address remember that we need the 

address from which the call originated. In [ESP+24] the address of the next instruction AFTER the call 

is stored so we need to subtract 6 bytes in relation to this address in order to get the correct one we 

need. The call to CallDLL code is indeed 6 bytes long. The “run” command in Command Text is 

needed to automatically resume the execution after having logged the data we are looking for. 

 

It's time to set the last two hardware breakpoints on the RET instructions respectively located at 

0x10001D7E and 0x10001D8D. Since we want the execution flow to jump back to our assembly 

code, we need to configure both of them in this way: 

 

 
  



 

We are ready to execute our code! Let’s go to the 0x350000 address and click RUN. Once the 

execution is completed, we will be stopped at 0x350024: 

 

 
 

Perfect, let’s click on the Log tab and you will find all the calls to CallDLL logged there       

 

 
 

Let’s copy all the entries into a new document called calls.txt, and we are finally ready to write a 

Python script to patch the executable. 

 

  



This is the Python code that I’ve written for our purpose: 

 
class Patch: 
    def __init__(self, api_addr, call_addr, is_jmp): 
        self.api_addr = api_addr 
        self.call_addr = call_addr 
        self.is_jmp = is_jmp 
  
    def get_api_addr(self): 
        return self.api_addr 
     
    def get_call_addr(self): 
        return self.call_addr 
     
    def is_jump(self): 
        return self.is_jmp 
  
  
def read_patches_from_file(file_path): 
    f = open(file_path, 'r') 
    lines = f.readlines() 
    f.close() 
    return lines 
  
  
def parse_patches(txt_patches, imagebase): 
    patches = [] 
    for txt_patch in txt_patches: 
        patch_parts = txt_patch.split('|') 
        patches.append(Patch(int(patch_parts[0], 16), 

int(patch_parts[1], 16) - imagebase, bool(int(patch_parts[2])))) 
    return patches 
  
  
def apply_patches_to_file(file_path, patches): 
    f = open(file_path, 'r+b') 
    for patch in patches: 
        f.seek(patch.get_call_addr() + 0x2) 
        f.write(patch.get_api_addr().to_bytes(4, "little")) 
        if(patch.is_jump()): 
            f.seek(patch.get_call_addr() + 0x1) 
            f.write(bytes([0x25])) 
    f.close() 
  
  
  
if __name__ == "__main__": 
    txt_patches = read_patches_from_file('calls.txt') 
    patches = parse_patches(txt_patches, 0x400000) 
    apply_patches_to_file("Evolva.exe", patches) 



Everything here is really simple: we will read all the data from calls.txt. Every single line will be split 

using ‘|’ character as a separator, and every patch will be applied to the .text segment. 

If the API should be reached by a jump, we will patch the corresponding byte turning that call in a 

jmp (by replacing the 0x15 opcode with 0x25).  

 

Please keep in mind that we have to subtract the imagebase address (0x400000) from the address of 

the calls we will patch in order to obtain the corresponding file offset. 

We can then load our new executable into the debugger and check it out: 

 

 

Where the CallDLL calls used to be now there are the correct APIs. 

Well done, you successfully removed Laserlock copy protection scheme from this executable       

However, the work isn’t yet finished...  

 
Cutscenes fix: 

If you launch the game without the disc in the drive you will find that the initial cutscenes aren’t 

played back. Well, if you carefully check the game’s directory, you will find that they aren’t there. 

 

Let’s put the original game disc into the drive and copy the FMV directory to the game installation 

folder. Then open the Registry Editor (cmd+r -> regedit [RETURN]) and edit the value of this key: 

HKEY_LOCAL_MACHINE\SOFTWARE\Computer Artworks\Evolva\1.0\FMVDir 

To: .\\FMV 

Now the cutscenes will be loaded from the game’s directory. 

  



 
Removing the evo32lib.dll dependency: 

Everything is working perfectly but our binary still depends on the evo32lib.dll library that was once 

needed by Laserlock. We don’t need this dependency anymore. 

 

Let’s load Evolva.exe into CFF Explorer and then click on Import Directory. Now select evo32lib.dll 

and click on Delete Import Descriptor:  

 

 
Let’s save it and we will finally have a totally Laserlock-free binary       

 
Credits: 

I’d like to thank m00k00 who helped my A LOT by reviewing this paper and correcting all the spelling 

and grammar errors! You are AWESOME! 

 

 
Conclusion: 

I hope that you liked this technical paper. Reversing these very old DRMs is quite fun and you learn a 

lot! 

Luca 


